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ABSTRACT 

A non-linear treatment of prominence condensation from the 

corona by means of thermal instability is presented. It is found 

that the prominence stage is reached after times of the order 

10 seconds. The major limitations on the process are due to 

magnetic fields; if the initial field strength is below 

gauss, heat conduction by free electrons prevents the formation 

6 

of condensations. 

prohibit a significant density increase. It is suggested that 

the observed density values develop from secondary processes, 

after the temperature has reached prominence values as a result 

On the other hand, fields above 10-1 gauss 

of initial thermal instability. 

iv 
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1. INTRODUCTION 

Quiescent prominences pose two basic problems. One is their 

presumed origin out of the surrounding hot dilute corona. The 

second problem is their stability over long periods of time. 

We shall attempt to specify the physical conditions leading to 

the formation of prominence in this dissertation. 

From stability studies, two major effects emerged that are 

of particular importance for the understanding of the formation 

process. Firstly, as originally suggested by Zanstra (1955), 

a quiescent prominence is in equilibrium with the coronal 

surroundings at approximately the same gas pressure. Secondly 

as discussed in detail by Kippenhahn and Schlcter (1957), follow- 

ing earlier work by Mensel (1951), and Dungey (1953), magnetic 

fields are required to hold the heavy prominence material up 

against gravitational forces. Both effects combined now mean 

that in a simplified model with essentially homogeneous magnetic 

fields the gravitational forces are balanced across the magnetic 

field lines, while at the same time pressure equilibrium is 

maintained and matter flow prohibited in this radial direction. 

The details of this thermal equilibrium as applied to fine structure 

elements within a quiescent prominence were discussed by Orrall 

and Zirker (1961), assuming vanishing optical thickness for each 

element, and most recently by Doherty and Menzel (1965) who included 

an approximate tr.eatment of radiative transfer in the resonance 

lines of H, He I and He I1 to account for the chromospheric and 

coronal radiation field. They succeeded in obtaining models with 
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central kinetic temperatures lower than Orrall and Zirker's 

30,000 OK. 

to reach kinetic temperatures as low as 40,000 OK has effectively 

produced a prominence. 

We conclude that a condensation process that permits 

Discussions of thermal instability in connection with 

prominence formation were carried out by Kiepenheuer (19538, 

1953b, 1959), Parker (1953), Kleczek (1957, 1958), and Lsst 

and Zirin (1960). 

criterium for a compressible medium. Field (1965) then investigated 

the general concept of thermal instability in great detail for a 

wide variety of dilute gases, carrying out the perturbation analysis 

in the linear approximation. A similar investigation concentrating 

on the wave modes was carried out by Hunter (1966). Uchida (1963), 

on the other hand, extended the discussion to non-linear terms in 

an attempt to specify the triggering mechanism for the condensation 

which he identified with a cosmic ray stream generated during a 

flare at a neutral point of the magnetic field region. This model, 

due to the strict relation with flare events seems most suited 

for prominence situated in the areas of extreme field strengths 

near sunspots, in particular, for loop prominences. Quiescent 

prominences with their predominant occurrence outside of the spot 

region proper, are unlikely to be triggered in this manner. We 

shall come back to this point after discussion of the condensation 

process is completed. 

Weyman (1960b) derived the correct instability 

This discussion is based on the set of hydromagnetic equations 

outlined in section 2 ,  with the appropriate gain and loss functions 

derived in sections 3 and 4 .  The linear analysis is reviewed in 
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section 5, the non-linear treatment in section 6. Section 7, 

finally, contains a summary of the conclusions. 

A survey of the historical development of prominence research 

and a brief list of facts of relevance to the study presented in 

this dissertation are given in Appendices. 
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2. FUNDAMENTAL EQUATIONS 

Let the corona be represented by a uniform, dilute, gaseous 

medium in thermal and mechanical equilibrium. Since the corona 

is highly ionized, it behaves practically like a perfect conductor. 

In the absence of a magnetic field, or parallel to the force lines 

of a homogeneous magnetic field, heat conduction by free electrons 

would almost instantaneously dampen out any temperature inhomogeneity, 

as has been discussed, for instance, by Oster and Sofia (1966) .  

Thus, the conjectured condensation of prominences out of the coronal 

naterial must take place across magnetic field lines, and a uniform 

magnetic field is presumed to be present throughout the corona. 

Along the field lines, no significant temperature gradient is 

expected. In praxi, the problem is of course much more complex 

in that the actual magnetic fields are highly inhomogeneous and, 

in the case of prominences, may be thought of as magnetic bottles. 

For o u r  puri)oses, however, the assumption of a uniform field is 

sufficient and effectively reduces the problem to a one dimensional 

one 

:“he basic equations to be set down below then refer to motions 

across the magnetic lines of force. Due to the extreme tenuity 

of the corona, a magnetic field of the order of one gauss would 

already dominate the dynamics of the medium, instead of the 

internal gas pressure. Ye know that under coronal conditions, the 

clean free path for electrons and protons is a few thousand kilometers, 

a lecgth which is of the order of prominence dimensions. Our 

equations now will use the continuum picture. In order to accept 
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e this basis for the formation of a prominence, we must have scale 

lengths for the phenomenon that contain many mean free paths. 

In the presence of a magnetic field the mean free path is effec- 

tively replaced by the gyration radius as the relevant character- 

istic length. Computation shows that even at as low a field as 

gauss and an electron temperature of lo6 OK, the gyration 

radius for electrons is less than a kilometer, while for heavy 

ions it is around 10 km. The above argument then justifies o u r  

use of the continuum picture wherein the prominence is assumed 

to condense out of the corona across the field lines. 

In the following, we review briefly the basic equations. 

Gaussian units are used throughout. 

CONSERVATION OF MOMENTUM: 

4 

the gas pressure, j the electric ' pg Here, p is the gas density 

current density, B the magnetic field strength, c the speed of 

light, and 7 the mass velocity. 
CONSERVATION OF MASS: 

MAXWELL 9 S EQUATIONS : 

Curl ii = 4 X 3 C  

& t y = O  - ? x i ;  . 



e 

In equation (2 .3 ) ,  we have ignored the displacement current, as 

we are considering low frequency disturbances only. 

is the "frozen-field condition" on account of the magnetic flux 

conservation in a highly conducting fluid. In cases where large 

scale lengths are involved, this condition implies that the electric 

current is governed by the inductance of the medium rather than 

by resistivity, as is the case for prominences. 

CONSERVATION OF ENERGY: 

The law of energy conservation states in the present instance that 

the time rate of change of the total energy, stored within the 

fixed volume v and consisting of kinetic, internal, and electro- 

magnetic energy, must equal the sum of the following terms: the 

rate of work done by mechanical forces acting on the fluid within 

the surface s, the influx of kinetic plus internal energy transported 

Equation (2.5) 

across the boundary, and the influx of heat and electromagnetic 

energy across the surface s. Expressed in integral form the law 

reads : 

U is the intrinsic internal energy of the fluid, < the heat flow 
vector, s the electromagnetic flow vector equal to ce x %/4n. 

In the integral on the left-hand side we ignored the electrostatic 

term, as we had neglected the displacement current earlier. After 

simple algebraic manipulations and using the other conservation 

4 
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equations along with Maxwell's equations, we get the following 

differential form for the law of energy conservation, 

At this stage we introduce the perfect gas law for the 

equation of state, viz., 

y is the adiabatic coefficient, which is assumed constant, as 

over the range of temperatures to be considered no significant 

change in overall ionization is expected to occur. 

specific heat at constant volume, 

(2.7) and (2.8) we find 

Cv is the 

Eliminating U between equations 

4 4  

We split the divergence of the heat flux V - q  into two 

components, One is due to the heat conduction, the other due to 

the difference E-H between energy lost by radiation and gained 

by external sources (radiation, wave dissipation, corpuscular 

heating, etc.). The energy law then takes the following final 

form: 

4 4  -4 4 

V o q  = - Q o ( K  VT ) + E - H  , B e  (2.10) 

and 

dP YP 3 p 

dt P dt + ( y  - 1 ) [ H  - E + ? * ( K B i T e ) ]  . (2.11) 
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One arrives at the same expression given by equation (2.11), 

incidentally, by taking the moments of the Boltzmann equation. 

K is the coefficient of thermal conductivity in the presence of 

a magnetic field. E is the llcooling function" for the radiation 

loss and H is the "heating function" due to external sources; both 

these functions will be specified later in detail. Note that on 

neglecting thermal conduction the magnetic field does not enter 

explicitly into the energy equation in the above form. This fact 

was overlooked by Uchida (1963). 

B 

KB is given by Orrall and Zirker (l961), viz., 

(2.12) 

where T 

N,Te? and Ne is the electron density. 

is the kinetic temperature of the electrons, cp equals e 

In addition to the above basic equations, there is a very 

useful relation that can be obtained from the conservation equation 

of mass and magnetic flux: 

B/p = constant . (2.13) 

In particular, during the process of condensation from coronal 

t o  prominence conditions, we have 

where BA and pA are the values at any later stage. 



3.  COOLING FmJCTION 

We define the "cooling function" as loss of internal energy 

by a unit volume per second. The internal energy of a volume 

element is identified with the kinetic energy of the free particles, 

since in our temperature and density range ionization and excitation 

energy can be neglected. Some of the kinetic energy of the 

particles is converted into radiation. If the medium is optically 

thin, all radiation counts toward the loss of internal energy. 

We will justify this assumption at a later stage in the discussion. 

One loss mechanism is bremsstrahlung. Collisional excitation 

of atoms and ions to higher levels and the continuum accounts for 

another mechanism. In both cases, the electrons form the ultimate 

energy reservoir. The ions, then, via elastic collisions impart 

their kinetic energy to the electron gas and help reach a new 

velocity distribution at a lower kinetic temperature. Maxwellian 

distributions are assumed throughout. 

The three loss mechanisms are thus: 

1. Free-Free Emission, 

2 .  Line Emission, 

3. Free-Bound Emission. 

The functional form of the free-free (bremsstrahlung) emission 

is (Orrall and Zirker (1961)), 

= 1.42 x io -27 N~ * T~ 1/2 ergs cm-3 sec -1 . (3.1) Ef -f 

Here Ne is the electron density, Te the electron temperature. 
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e 
The line emission can be separated into two parts: permitted 

and forbidden line emission, Permitted line emission is always 

present. However, under certain conditions of temperature and 

density, forbidden line emission must be considered. This is the 

case in the corona. In o u r  calculation we included this contri- 

bution for electron temperatures lo5 O K ,  and electron densities 

< 10 9 . Orrall and Zirker (1961) found for the net forbidden line - 
emission, 

-24 N~ ergs cm-3 sec -1 . Ef,L = 3 x 10 e 

Let us now turn to permitted line and free-bound emissions. 

In both types of processes, an electron excites an ion from a 

lower bound level to a higher bound o r  to a continuum level. In 

steady state, and if the gas is optically thin, these upward 

transitions equal the downward radiative transitions. In computing 

the cooling by line and free-bound emissions we need to know the 

density of each ion o r  atom operative at a given temperature and 

electron density. To obtain this information it suffices to 

consider the statistical equation of state for transitions between 

the ground state and the continuum level only. 

these assumptions break down, but then we can say that a prominence 

has evolved. 

Below 40,000 O K ,  

We should like to discuss at this point, in some detail, 

the conceptual and computational limitations of the procedures 

adopted below f o r  obtaining the actual radiative cooling rates. 

Firstly, following Pottasch (1965), Doherty and Nenzel (1965), 

and others, we restrict our considerations of line emissions to 
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the resonance lines, that under the physical conditions envisaged 

here lie in the near and far ultraviolet. This restriction is 

certainly permissible in the case of atoms such as H, He, and 

the higher stages of C, N, 0, etc,, whose excited bound levels are 

relatively high above the ground state. At the same time, in these 

atoms the assumption of a balance between collisional excitation 

and radiative deactivation will be an acceptable simplification. 

In support of this contention we made in Appendix B an estimate 

of the relative importance of emission in subordinate lines of 

metals, the hydrogen and helium subordinate lines, and the Balmer 

and Paschen continua. The outcome clearly shows that of all these 

features the Balmer lines are still the dominant source of radiation. 

It is fair to conclude therefore that the corresponding resonance 

lines will carry even more weight. Consequently, subordinate lines 

as well as metal free-bound continua are left out of o u r  radiative 

cooling functions; this restriction, incidentally, is inherent as 

well in all previous work, 

Secondly, the resonance lines which were considered were not 

corrected for finite optical depth, A decision as to the signifi- 

cance of this assumption is hard to make a priori, if only for 

the reason, that in reality an established prominence consists of 

a filamentary network of small dimensions whose elements or fine 

structures may well be optically thin in the metal resonance lines, 

while a computation of the optical depth for the overall dimension 

of a quiescent prominence would yield a rather large value. We 

feel that in the framework of the present investigation the 

assumption of negligible optical depth does not invalidate our 
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a 
conclusions, although possibly the characteristic times and similar 

numerical quantities may be somewhat underestimated. It should be 

mentioned that in resonance lines the physical processes are 

complicated by scattering that prevents establishing the conditions 

of true absorption even for optical depths above unity; c.f. 

Ivanov-Holodnyi and Nikolskij (1961). Again we follow Pottasch 

in this respect. 

We have computed the radiative loss of an optically thin 

element in the resonance lines of importance anew for two reasons: 

Firstly, the most recent similar work by Pottasch, and,Doherty 

and Menzel give significantly different numerical results, with 

the origin of the difference being hard to determine from published 

data, Secondly, we wanted to include a few more elements than 

considered by Pottasch in order to be sure that no major source 

of cooling was left out, This applies, in particular, to N, S, 

and Fe, Altogether we considered H, He, C ,  N, 0, Mg, Ne, Si, S, 

Fe. 

elements in the solar plasma. iiumerical values for their abundances 

are collected in Table 1, and compared with the values adopted 

by Pottasch. 

They are, according to Aller (1963) the ten most frequent 

Pottasch's expression for the emission rate in collisionally 

excited resonance lines reads 

= " x ergs cm" sec-' Qexc e a,& exc,erg E 
a,€ 

the collisional excitation rate, xexc,erg is the 
the same energy in eV. N 

a,& , Xexc ,ev excitation energy in ergs 

is the ionic density for a particular element. The collision 



rate Qexc is given by Pottasch (1965) as 

(gfiu) is the oscillator strength for the resonance multiplet. 

p(xeXc) is a numerical correction factor, ' f . 

'exc = 1.16 x 10 xexc,ev x T-l (3.5) 4 
e *  

Using equation (3.4) in equation (3.3)l we get for the energy loss, 
-- 

N is the number density of the element in question. 

hydrogen density,, 

a given ionization stage of element 1. 

abundance with respect to hydrogen. Considering the medium to be 

practically a hydrogen-helium plasma, we can set N /NE equal to 

1.16, and rewrite equation (3.6) as 

NH is the 
E 

Na/Ni constitutes the relative ion density for 

N'/NH is the relative E 

e 

Expressing the electron density in units of 10 7 particles per cm 3 

so that Ne is equal t o  N; x l o 7 ,  we finally have, 



a 
Equation (3.8) has to be summed over all ions present at a 

given temperature to yield the total emission in resonance lines. 

For  this purpose, the ionization ratio was computed for a given 

element as a function of temperature for different stages o f  

ionization. The expression used here is given by House (1963): 

= 5.847~10~~(3.lOZ: - 1.20Zi - 0.90)n -1 -2 2 -3  ni+l/ni Z. T: xi ~exp(x~)l-~&. 

(3.9) 

where Xi equals ~ ~ , ~ ~ ~ 1 . 1 6 x l O ~ / T ~ .  n is the principal quantum 

number of the lower ion. is the ionization potential of the 

lower ion in eV, si is the number of electrons in the outer shell 
of the lower ion, Z is the ionic charge after ionization. i 

Using equation (3*9), we obtained the absolute density for 

various ions. At any temperature we ignored those ions whose 

relative density was less than 100/0. This allowed at certain 

temperatures the use of  f o u r  stages of ionization for a given 

element. As mentioned, the abundance figures were taken from Aller 

(1963). The values of (gf. ) for various resonance lines were 

obtained from the article by Varsavsky (1961). P(Xexc) values 

were tabulated by Allen (1963). ) exc 

lies on the average around 0.25, except for neutral hydrogen and 

neutral helium for which necessary corrections were made. We 

considered temperatures between 1.5 x lo6 OK and 2.5 x lo4 OK. 

1u 

Actually, in our case P(X 

The contribution of various processes to the total cooling 

has been tabulated below in Table 2. F o r  comparison, the results 

obtained by Pottasch, and by Doherty and Menzel are summarized 

in Tables 4 and 5. The total energy loss is given as a plot of 



0 
log E/NA2 vs log Te (Fig. l), together with the results by Pottasch 

(1965), and Doherty and Menael (1965). The agreement with Pottasch 

is quite good. The difference between o u r  curve and Pottasch's 

curve at high temperatures might be due t o  the higher abundance 

of Mg used by Pottasch and o w  inclusion of N, S, and Fe. The 

difference between our curve and Doherty and Menzel's results 

might be due to the somewhat different cross section adopted by 

them (a modified form of Elnert's (1954) cross section). 

> 

However, 

they have not specified the chemical composition used in their 

calculations. 

Summarizing then, we feel that the radiative cooling function 

is known to sufficient accuracy for o u r  purposes, and that any 

difficulty could only arise in connection with the basic assumptions 

enumerated at the beginning of our discussion of line radiation. 

These assumptions, however, appear sufficiently justified in the 

present context. 

a 
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Chemical composition: 

Table 1. 

Aller (1963) 

NHe = 0,16 NH 

N~ = 3.98 x 10-4 N~ 

N~ = 1,io x 10-4 N~ 

N~ = 8.81 x 10-4 N~ 

= 5.01 x 10-4 N~ 
"f3 

N = 2.69 x lo-' NH 

N~ i = 3.16 x 10-5 N~ 

" 5 

-6 

NS = 2,OO x 10- 

N = 8,91 x 10 NE Fe 

Pottasch (1965) 

= 0.10 NH 

= 5.00 10-4 " 

= 1.00 x 10-3 " 

-- 

= LOO 10-4 IT, 

= 1.00 x 10-4 N, 

-4 = 1.00 x 10 NH 

e 



Radiative cooling rate: Our results 

Radiative energy loss in the table below has been expressed in 

units of 10-9 ergs per cm per sec per N A .  
3 2 

Ne = NA x 10 7 

where Ne is the electron density. 

Table 2. 

C ,Electron 
temperature 

in OK 

e 

2x1~4 

3x104 

4x104 

5x10 4 

6x104 

8x104 

5 1x10 

~ 0 5  

3x10 5 

6x10 5 

5 4x10 

5 
6 

6 

8x10 

1x10 

1.5~10 

E/B 1 e 
Ne tala 

. 2,96 

9.15 

16,9 

28.4 

41.8 

54.1 

53.6 

45.9 

25,1 

13.4 

5 -44 
3*66 

2.12 

1.27 

E/N;* 
He I1 

E/N;~ 
Free- 
Free 

2.01 
x10-2 

2.47 -2 

2.84 -2 

3.18 -2 

3.48 -2 

x10'2 
4.49 -2 

6.35 -2 

7.78 -2 

x10-2 

x10-* 
1.27 -1 

1-42 -1 

1.75 -1 

x10 

x10 

x10 

x10 
4.02 

x10 

x10 

x10 
8.97 

1.10 

x10 

x10 

x10 

' osb 1 d - 
.en line 

- 
E/$ 

Tota l  

- 
14.0 

14.7 

20.2 

32.4 

52.4 

79 -0  

70.6 

49.1 

26.6 

14.4 

6.22 

4-05 

2.51 

1.74 - 
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Radiative cooling rate: Data,for the graph from our results. 

Table 3. 

Te, Electron 
temperature 

in OK 

4 2 * Ox10 

4 3 .ox10 

4 4 * Ox10 

5 e 0~104 

6. Ox104 

4 8 Ox10 

5 1 * Ox10 

5 2 0 Ox10 

5 3 0 Ox10 

5 4.0~10 

6.0~10 5 

5 

6 

6 

8 Ox10 

1 0 Ox10 

1 5x10 

4.30 

4.48 

4.60 

4.70 

4.78 

4.90 

5 .OO 

5.30 

5 048 

5.60 

5.78 

5.90 

6 .oo 

6.18 

E/N;~ 
ergs cm-5sec-l log E/N; 2 

-7.86 

-7 83 

-7 69 

-7.49 

-7.28 

-7.10 

-7 15 

-7.31 

-7.57 

-7 84 

-8.21 

-8 39 

-8 59 

-8 76 



Radia t ive  coo l ing  r a t e :  Po t t a sch ’ s  r e s u l t s .  

Table 4. 
.- 

P e t  E l ec t ron  

temperature 

in OK 

4 

4 2 . 5 ~ 1 0  

4 4 0x10 

4 6 5x10 

4 8 Ox10 

5 1 .ox10 

5 1 ., 2 5x10 

5 1 6x10 

5 2 0 Ox10 

5 3 0x10 

5 

5 

5 

6 

6 

2 .ox10 

4 ., Ox10 

6 5x10 

8 Ox10 

1 e Ox10 

2 ,ox10 

Log Te 

4-30  

4 040 

4.60 

4.81 

4.90 

5 .OO 

5.10 

5.20 

5.30 

5 048 

5e60 

5.81 

5.90 

6.00 

6.30 

E / N ; ~  

-1 ergs  cm-3 s e c  

9. ~ O X ~ O - ’  

6 . 8 0 ~ 1 0 - ~  

1 e 8 0 ~ 1 0 - ~  

5 . 7Ox1Om8 

6 . ~ O X ~ O - ~  

5 .oox10-8 

5 ~ O X ~ O - ~  

5 ~ O X ~ O - ~  

6. ~ O X ~ O - ~  

3 0 20x10-8 

1 e ~ O X ~ O - ~  

1 0  20x10-8 

9 e ~ O X ~ O - ~  

7050x10-9 

4 e ~ O X ~ O - ~  

Log E/N; 2 

-8.00 

-8.17 

-7.75 

-7.24 

-7 19 

-7 30 

-7.25 

-7.25 

-7 1 9  

-7.50 

-7.77 

-7 0 92 

-8.03 

-8.15 

-8 36 
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Radiative c o o l i n g  ra te :  Doherty and Menzel's r e s u l t s .  
e 

Table 5. 

T e s  Eleot ron  
temperature 

i n  K 0 

4 

4 

4 

1 e Ox10 

1 8x10 

3 0 2x10 

5 6x10 4 

5 1 .ox10 

5 1 ,, 8x10. 

5 

5 

3 e 2 X l O  

5 6x10 

6 
l o  Ox10 

6 1 e 5x10 

- 

Log T e "  

4.00 

4.25 

4.50 

4.75 

5 .OO 

5025 

5.50 

5.75 

6 .OO 

6.18 

2 .og E,"; 

-9 .OO 

-8.36 

-7.79 

-7.07 

-6.64 

-6.50 

-6 77 

-7.37 

-8.23 

-8.71 

-3.00 

-2.86 

-2.79 

-2 . 57 

-2 64 

-3 . 77 

-4 87 
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4. HEATING FUNCTION 

Let us now define the "heating function" entering equations 

(2,lO) and (2011). A volume element in the corona would remain in 

thermal equilibrium so long as it gains as much energy as it loses 

via radiation. There are several means of supplying heat energy, 

in particular. 

1, Photoionization, 

2 Wave dissipation, 

3. Corpuscular heating. 

Note that conduction was separated out in equations (2.10) and 

(2.11) c 

Photoionization, as we have stated earlier, is not important 

under coronal conditions. It would be significant at temperatures 

where prominences are stable. 

worry about this contribution, 

Above some 4 x lo4 OK we need not 

We are then left with contributions 2 and 3. In both these 

cases, the heat input would depend on the local density of the 

medium. This can be seen as follows: The energy of a wave resides 

in the translational energy of the particles subjected t o  wave 

motion at any given point. In order for the wave to dissipate its 

energy, it must transform this ordered kinetic energy into random 

kinetic energy of the surrounding medium. The transfer is the 

more effective the higher the number of particles is that are 

available for collisions. Thus, heat input by wave dissipation 

is proportional to the local density of the medium, as suggested, 

for instance, by Weyman (1960a) , and quoted by Field (1965). 
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The same argument now holds for corpuscular heating. At 

this point it might be worth noting that the Sun is thought to 

generate a radial corpuscular stream of particles. During the 

passage through chromosphere and corona, the stream will lose 

some of its translational energy by heating the medium before it 

merges from the corona as the observed solar mind. 

In our analysis we will use a heat input function, due to 

wave dissipation or corpuscular heating, in the form, 

where 

H = Aop . 
is a constant to be specifiel 

0 

matter density. 

(4.1) 

later, p is the local 

We are now ready to apply the basic equations developed in 

chapter 2 t o  the stability analysis. Chapter 5 is concerned with 

the linear analysis, whereas chapter 6 will be devoted to the 

non-linear treatment,, 



5 LINEAR OSCILLATIONS 

e 

In the present chapter we make use of the basic equations 

set up in chapter 2, together with the cooling and heating functions, 

as specified, to analyze the stability behavior of the solar corona. 

This problem has been discussed by Field (1965) in the general 

context of thermal instability, We briefly summarize the analysis, 

discussing in some detail those aspects of particular significance 

f o r  o u r  later non-linear treatment. 

We consider the corona as a uniform, dilute gaseous medium 

behaving like a perfect conductor. A uniform magnetic field is 

supposed to be prevailing throughout the corona. In the un- 

disturbed state the corona is in thermal and mechanical equilibrium. 

This state is characterized by the balance, 

H - E  3 0  
0 0 (5.1) 

H 

energy loss via radiation. Mechanical equilibrium f o r  the initial 

state is preserved by the absence of any inhomogeneity in physical 

quantities. In the present chapter we want to study the thermal 

stability of the medium around equilibrium, when the medium is 

subjected t o  infinitesimal perturbations. The analysis amounts 

to obtaining the dispersion relation for linear hydromagnetic 

oscillations. The roots of the dispersion relation reveal the 

possible existence of any unstable thermal mode that will lead 

to condensation within the medium. 

is the heat input per cm3 per second, E is the corresponding 
0 0 



The linearized equations in the perturbed form read as 

follows : 

J X B  
0 4 

= - v p +  ai; 
Po at C 

MASS CONSERVATION 

4 4  3J.L = - Po v - v  . at 

(5.2) 

(5.3) 

ENERGY CONSERVATION 

&I=- ypo ilk2 + (y-l)[(- aHO - -)p aEo + (w aHo - - aEo)T + KoV2T]. (5.4) 
0 

aT a P o  aP, 0 at Po at 

EQUATION OF S T A T E  

P/Po = P/Po + T h o  (5.5) 

MAXWELL'S E Q U A T I O N S  

4 V x Bo 
c at = - curl . (5.6) , & =  - C (5.7) 

From equations (5.6) and (5.7) w e  get, 

3 2  4 4  

_. a t  = curl (v x B ~ )  . ( 5 . 8 )  

Quantities with the subscripts 1 0 '  are the unperturbed equilibrium 

values. All other quantities represent small departures from the 

equilibrium values. h is the perturbed magnetic field strength. 
4 
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4 

J is the induced electric current density. We specify the 

perturbation to have the wave form, 

wt+ikx 
qOe 

whereqo is the amplitude, k the wave number along the x-direction, 

and UJ the frequency of the disturbance. 

Zliminating all the perturbed physical variables from 

equations (5.2) - (5.8), we get the following expression for the 
dispersion equation, 

(w2 + k2V;2i[u3 + {K T k2 + T L }w2 + k2(V; 2 2  +Cs)w 
0 0  o T  PO 

+ (“)k2{K T k2(VA2+ C a / y )  + VL2L T +C2/y [ L  T -L p I}] 
0 0  T o  s T o  p o  PO 

- Vt2Vi2k4 X [ w  + *(K Po 0 T 0 k2+LTTo)]  = 0 . 

where KO is the equilibrium thermal conductivity coefficient in 

the presence of a magnetic field. 

Furthermore, we have, 

aEo a*O)  

P =(q- .p ,  L T = ( x - - ,  aEo 3HO) 
0 aTO 
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The above dispersion equation is similar to the one obtained by 

Field (1965). 

out the effect of oblique propagation. In order to study the 

maximum effect of magnetic field, we restrict ourselves to the case 

where the propagation vector is perpendicular to the magnetic 

field, Ye expect the prominence to condense out of the corcna 

across the field lines, since in this manner conduction is inhibited, 

and the prominence is allowed to develop. 

The last bracketted term in equation (5 .9)  brings 

:Ve let the x-component of the magnetic field equal to zero 

and let the field lines run normal to the x-y plane. The dispersion 

equation then takes the form, 

u3 + y-l (K T k 2 + T L }w2 + k2(VA2 + C s ) w  2 
0 0  o T  PO 

b + y-l k2(K T k2(Vs2+ ") + V; 2 LTTo + - S (L T -L p )} = 0 .  
b 

PO 0 0  = Y  Y T o  P O  

Thus we have three modes of oscillations given by the three roots 

in w. For a given k, instability would set in if equation (5.10) 

has  one real positive root. The general condition for equation 

(5*lO) to have at least one real positive root is to have the 

term independent of w less than zero. 

to occur we find the condition, 

Thus for thermal instability 
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The radiative cooling function, as seen from equation ( 3 . 7 ) ,  

is proportional to the square of the electron density and to some 

function of temperature, discussed in chapter 3 ,  and given by 

Fig, 1. From the cooling curve it is clear that one could 

represent the temperature function by some power of Te, with the 

temperature index defining the slope of  the curve at any given 

temperature. A s  is obvious from the shape of the curve, the slope 

changes as a function of temperature. 

We express the cooling function in the analytic form as 

E = C p 2 T P ,  
0 0 0  e (5.12) 

is the equilibrium 
P O  

where C is constant, P is temperature index, 

natter density. Using equations (4-l), and (5.12) in 

equation (5"11) we get the instability criteria 

0 

€ 0 .  
1 K T k2 

0 0  
E + F -  2 2 -  
0 1 + Y y  /cs (5.13) 

Equality in (5"l3) represents the marginal case, 

side of equality we have all stable modes, on the negative side as 

displayed by (5*13), we have at least one unstable mode. 

instability criterion given above is similar to the one obtained 

On the positive 

The 

2 by Field for isobaric thermal modes. When k2 = E /K T = k 
0 0 0  C 

conduction will 

conductivity as 

K = 6 x  
0 

balance the radiative losses, where the thermal 

quoted in chapter 2, is given by, 

-1 -1 -1 ergs cm sec deg , -17 2B-2 
lo q o  e 
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with 
y = N T  

e e  

We tabulate below a few equilibrium values, as an aid to the 

discussion of (5*13). 

and I2enzelfs cooling curve to get the values of p*cp is assumed 

constant and y = 5/3. 

For illustrative purposes, we use Doherty 

Constancy of 'p implies that under isobaric conditions the 

equilibrium magnetic field may not be greater than 6 x loe3 gauss. 

At higher magnetic field strengths, tp is not constant during the 

Condensation process, In the extreme case, where the magnetic 

field dominates the pressure balance, and the plasna acts as an 

incompressible fluid, the density remains essentially constant 

and only the temperature drops. This behavior is verified by 

the non-linear analysis to follow. 

On the other hand, our expression for the thermal conductivity, 

as reduced by the presence of a magnetic field, is valid for the 

complete condensation process, provided that the initial field is 

at least 1 x loe4 gauss, 

detail in chapter 7. 

We will come back to these points in 

From Table 6 we see that around lo6 OK and for a field of 

loe3 gauss thermal conduction can be ignored for wave numbers 

k 5 cmol. A more detailed justification for this neglect 

of thema1 conduction is given in Appendix C. 

Since I > 1, the corona becomes thermally unstable to small 

perturbations around the equilibrium. Lloreover, the velocity of 

sound is high enough to insure isobaric perturbations, if the 

characteristic time for a prominence to evolve is greater than 
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1000 seconds, This time of 1000 seconds is the time required by a 

sound pulse to traverse a distance of 100,000 km at the sound speed 

of 100 km per second, Thus, the observed life times for quiescent 

prominences indicate that their evolution indeed follows isobaric 

conditions, Neglecting thus thermal conduction, the instability 

criterion becomes 

For o u r  cooling function, (3 is less than zero for a considerable 

range of electron temperatures. When the magnetic pressure is 

small compared to the internal gas pressure, inequality (5.14) 

yields 

- 1 + p < o  , (5.15) 

whereas for magnetic pressures above the gas pressure, we have 

for thermal instability to occur: 

p < o  . 

This result is well known. 

However, condition (5016) in our case is rather puzzling. 

At the outset, it states that even at extremely large magnetic 

fields one could obtain condensations across the field lines, 

although with increasing field strength it becomes more and more 

difficult to compress conducting matter across the field lines, 

since the magnetic field has the property of imparting rigidity 

to the electrically conducting medium. The answer to the problem 



is furnished by the mode amplitudes. Since our dispersion equation 

is of third degree, we have three modes of propagation. One of 

the nodes is a pure thermal mode, the other two are compressional 

modes. In a linearized theory, the density fluctuations at any 

time and position may be represented as the algebraic sum of density 

fluctuations due to all the three modes. Ye then have 

w t  
(5.17) w2 3 u t  1 p(x,t) = Ak(x) e + Bk(x)e + Ck(x)e 

A k l  B k 9  and Ck are the mode amplitudes for the three modes of a 

given wave number k. The w ’ s  are the respective frequencies 

furnished by the three roots of the dispersion equation. We can 

derive the mode amplitudes by specifying initial values o f  the 

perturbed quantities such as density, pressure, etc. Two more 

equations are needed to solve for the three unknowns A 

and C k o  

a third order time dependent differential equation in density, 

the required two equations, in principle, are of the form 

k’ Bk’ 
Since the set of basic equations can be transformed into 

and 

= w 2 A (x) + w2Bk(x) 2 + w 2 C (x) a$(x9t)jt=0 a t2 1 k 3 k  

Solving equations (5.17) - (5019) simultaneously for A k, Bk7 and 
Ck, we get 



6 + a(Wo+Wl> 2 2  

w -2Wlo+w3< 
- 2W 0 

Ak(X) SS 2 (Thermal mode) ( 5 2 0 )  

B k = x + i y  Ck = x - iy (compressional mode) , (5.21) 

'fiere 

1 2 0 1' w3 = 0 - iwl W = W ,  w = W  +iW 

2 2 2  x =  
2[ w -2wwo+wo+w1] 

(0-aW) (W--W, 2 2  ) + W_( aW2-6) + W( 6-0W) 
V . I .  v 

2W1CW* - 2ww e wo 2 + wl] 2 Y "  
0 

In order to specify the amplitudes, we must know W, Wo, and 

W1, as function of t he  equilibrium values. 

the roots o f  the dispersion equation (5010). 

conduction, equation (5.10) can be written as 

This amounts t o  finding 

Ignoring thermal 
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In our case when the magnetic pressure is large compared with 

the internal gas pressure, so that we can ignore C /VI2 as compared 

to one, equation (5.24) for [ P I  > 1 becomes 

2 
s z  

Equation (5.25) has the following three roots: 

( Y-l)EoP 
w = -  (Thermal mode) . (5.26) 

PO 1 

w = 2 ikV; (Compressional mode) . ( 5  027) 293 

If p < 0, the thermal mode is unstable, otherwise it is stable. 

Referring to equation (5,22), we have in the case of high magnetic 

field the following roots for the dispersion equation, 

w 0 = o ,  Wl = 2 kVl . (5.28) 

From equation (5,28), the mode amplitude for the thermal mode 

is found as 
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For any arbitrary initial disturbance of density, which can be 

Fourier-analyzed into components, the terms containing the density 

function in the numerator of equation ( 5 . 2 9 )  cancel out to zero. 

The only place where we would have terms containing the magnetic 

field is in the denominator of equation ( 5 . 2 9 ) .  Thus the amplitude 

of the thermal mode is proportional to the inverse square of the 

magnetic field strength. This result simply means that unstable 

thermal modes, although possible in principle, would find it hard 

to develop across the lines of strong magnetic fields, so that at 

sufficient field strength we are left with the two compressional 

modes , travelling across the field lines at the AlfJen speed. 
Before we turn to the non-linear analysis we have to ascertain 

that in the temperature range considered, equilibrium is not 

reached, iue.$ that a stable configuration results only at 

temperatures below 4 x lo4 OK which we take as an acceptable 

upper limit for the electron temperature in quiescent prominences. 

For this purpose, we consider first the initial equilibrium 

state given by 

To = AoPo 

Thus 

A = C p T  P . 
0 0 0 0  (5.30) 



In order that thermal equilibrium be attained at a later stage, 

we must have 

I 

or else 

2 v  
Ao? = COP T 

Upon replacing the value of A 

(5 031) we find the inequality 

from equation ( 5 . 3 0 )  in equation ~ 

0 

If p is less than zero (which is true for the radiative cooling 

function over the whole range under consideration), then let 

p = - po with p > 0 ,  The inequality now reduces to 
0 

Since p is greater than p and T > T ,  the system will indeed 

not attain thermal equilibrium at any later stage. 
0 )  0 

However, we can suspect that, as the condensation process 

approaches the actual prominence temperature, radiation losses 

will diminish due to the decrease in the number of electrons. 

This drop in electron density is brought about by a decrease in 

overall ionization. Moreover, the prominence will become optically 

thick to chromospheric radiation, in particular, the resonance 

continua of H and He I which provide an additional, efficient 

heating mechanism. 



Due to flux consqrvation, the magnetic field strength will 

increase under condensation. If at any intermediate stage the 

field becomes large enough to satisfy the inequality (5.16), 

further condensation across the field lines is effectively 

prohibited. This is indeed borne out by the non-linear analysis 

to be discussed presently. 
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e 
6. N ON - LINEAR CALCULATIONS 

In the last chapter we saw that a uniform, dilute corona is 

thermally unstable towards infinitesimal perturbations. It was 

also shown that, for the specific cooling and heating functions 

adopted, the unstable mode does not reach equilibrium at a later 

stage for the range of the electron temperatures considered. 

We now extend the analysis to non-linear perturbations and 

obtain the time scale of the condensation process out of the 

corona, It was postulated earlier that the condensation follows 

isobaric conditions. If the magnetic pressure is small, the matter 

density increases between initial and final stages by about a 

factor of 100, while the electron temperature falls by about the 

same factor. Observations indeed indicate that the internal 

gas pressure in the undisturbed corona is not too different from 

the gas pressure within prominences of the quiescent types. Such 

conditions for the equilibrium state of prominences were first 

suggested by Zanstra (1955a, 1955). 

We also confine ourselves here to isobaric perturbations. 

Without much loss of generality we consider as a simplified 

model a cylindrical configuration within the corona, with a 

uniform magnetic field running parallel to the axis of the cylinder. 

Let the cylinder undergo radial compression due to some unknown 

disturbance. Thermal instability will set in and lead to further 

condensation according to the previous considerations. An increase 

in density enhances the cooling rate with the result that the 

temperature falls more than to compensate for the pressure 



difference caused by the initial density increase. This leads 

to further condensation and the process continues until a final 

thermal equilibrium state is reached. In the present section we 

wish to follow the development of this condensation process. 

The idea of isobaric perturbations is crucial in the present 

context, Since the medium is ionized, magnetic field lines are 

frozen in. This demands magnetic flux conservation during any 

change in the medium. Nagnetic flux and mass conservation implies, 

for our specific model, that any increase in density causes a 

corresponding increase in the magnetic field strength; c.f. equation 

(2.14) 

If during the transition from the corona to the prominence 

the density increases by a factor of 100, to compensate for the 

decrease in temperature and the final magnetic field would also 

have to be 100 times the original field strength. To insure 

isobaric conditions the total pressure (magnetic plus gas pressure) 

must stay constant during the entire condensation process. This 

amounts to the requirement that the initial field should be of 

such a strength that it does not become large enough at any later 

stage to overcome the gas pressure. Thus, a prominence whose gas 

pressure exactly equals the coronal gas pressure can originate 

only in regions of very weak magnetic fields. For a coronal 

electron density of lo8 cm-3 and an electron temperature of 

1+5 x lo6 O K ,  we have, assuming a final prominence temperature of 

l05 x 104 OK and an electron density of lolo cm-3, equality 

between magnetic pressure and gas pressure, if we start with 0.01 

gauss. Hence, in order that the magnetic pressure may not dominate 
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in our specific mode of condensation, the initial magnetic field 

must be below 0.01 gauss. The corresponding final field would 

then be about 1 gauss. Such a value contradicts the observations 

by Zirin (1962) and more recent polarization studies by Hyder 

(1965) of quiescent prominences. The obvious conclusion seems 

to be that in general the gas pressure in the prominence should 

be somewhat less than the gas pressure in the surrounding corona. 

One has t o  remember, however, that our model is highly 

idealized, in the sense, that it assumes either homogeneous 

plasmas or plasmas that are as close as possible to the homogeneous 

caseo This idealization is probably quite appropriate in the 

early stages of the condensation, assuming the corona to be as 

unstructured as it is commonly suggested. Once the prominence has 

formed, however, it is obvious that aside from the already mentioned 

structurization rather violent, so-called "turbulent" motions set 

in that are well documented by Doppler studies. It is quite 

conceivable that by such processes magnetic field lines are 

entangled and transformed into bundles of relatively high strength. 

We feel that these things at present are not quite accessible to 

either theoretical or observational discussions. 

hIass conservation requires that, if the density increases 

by a certain factor, the radius of the cylinder must decrease by 

the square root of this factor. The average observed overall 

thickness of a quiescent prominence is about 20,000 km. This 

means that the characteristic size of the condensation must be 

of the order of 200,000 km. It is interesting to note that 

observations by Williamson, Fullerton and Billings (1961) have 



40 

shown a lower density in the corona in the immediate neighborhood 

of quiescent prominences. 

For  such a scale length of 200,000 km, as has been shown 

in chapter 5 thermal conduction can be ignored. This simplifies 

the problem in the sense that one need not consider the spatial 

variation of the physical variables. Hence, we have only to 

solve the non-linear energy equation in order t o  follow the 

condensation process, The final equation to be integrated out is 

an equation in time only. Thus, the integration will supply us 

with the time scale for the evolution of a prominence. 

A s  before the energy equation reads 

Upon ignoring thermal conduction equation (6.1) becomes 

The condition of pressure equilibrium requires that 

p + B2/8n = p i  + Bo/8a 2 , g 

where p 

corresponding values at equilibrium. 

and B are the values at any time, and po and Bo are the 
B g 

Equations (6.2) and ( 6 , j )  can be written in the dimensionless 

form: 



and 

( 6 . 5 )  

where 

Equation (6.5) expresses the temperature in terms of the density, 

viz, 

Cooling and heating functions can now be expressed in terms of y. 

For the heating function we have 

( 6 . 7 )  

and for the cooling function 

Quantities with subscripts ze ro  refer to equilibrium values. 

Equation ( 6 , 6 )  establishes a unique correspondence between 

temperature and density at any time. 

find for E the alternate form 

Using equation ( 6 . 6 ) ,  we 

where, 

7 N = NA x 10 e 
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A t  equilibrium, we have E 5 H and y = yo. Thus the constant A1 

from equation (6.7) becomes 
0 0 

(6.10) 2 A1 = Yo NAo G(Yo) 

From equations (6.4), (6,9), and (6.10), we obtain the differential 

equation of our problem in the following form: 

We first discuss the case of initial magnetic fields smaller 

than 0.01 gauss, where the product NeTe stays essentially constant; 

c . f ,  section 5. We assume this product to have the value 

1.05 x 1014 corresponding to an electron density of 7 x lo7 at an 

electron temperature of 1.5 x lo6 OK in the equilibrium stage. 

Defining a time constant t by 
0 

we obtain 

Defining, further 

7 = 7 t  and 7 = t/T0 9 0 0 

equation (6.11) reduces t o  

(6.12) 
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A perturbation of the medium may start from any equilibrium 

position, 

and density are 1.5 x l o 6  OK and 7 x lo7, respectively. 

yo = 2 ,  then Te o 705 x lo5 OK and Ne is obtained from the 

constancy of the product NeTe. 

Equation (6.14) was integrated numerically on an IBM 7094 

For  instance, if yo = 1, the corresponding temperature 

If 

computer. The Runge-Kutta scheme for numerical integration was 

followed. Since y has one to one correspondence with temperature 

through equation(6.6), we get a set of values for G(y) vs. y from 

the cooling curve. 
2 the quantity E/N; 

y was prepared such that the intermediate values could be obtained 

by linear interpolation. In the actual computation the cooling 

at any stage was read by the computer from the constructed table. 

The function G(y) used above is indeed just 

From this set of values a table of G(y) vs. 

Two limiting values for the parameter Z that contains the 0' 

initial magnetic field, were chosen. The higher value corresponds 

to a field strength above which constant gas pressure cannot 

be preserved. The lower value corresponds to a field strength 

below which the magnetic field is no longer sufficient to inhibit 

thermal conduction across the field lines. 

The integration was terminated when y reached a value of 60. 

At this This value corresponds to a temperature of 2.5 x lo4 OK. 

stage a prominence has definitely formed. 

In the actual computation o u r  cooling curve, and Doherty 

and Menzel's results were used ,  The outcome is plotted as a graph 

of y VS. T (Figs. 2 and 3 ) .  

y increases sharply gives the characteristic time for prominence 

The value of T at which the value of 
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evolutioc, These characteristic values T and the corresponding 

times tc in seconds are given in the Tables 7 and 8 for different 

equilibrium values. We have assumed in all these cases an initial 

disturbance of 270, 

become smaller. However, we feel that this parameter is of little 

importance, The tabulated values were computed for an initial 

coronal electron density of  7 x 10 . For higher electron densities 

and the same temperature the time scale of condensation is 

correspondingly smaller. 

C 

With larger disturbances the time scales 

7 

In table 8, we have indicated the same value of T for the 

two Zo values, since the curves for these two values are practically 

coincident. The detailed computation of the stage where the 

"blow up" occurs shows that the condensation is slowed down some- 

what at the higher field strength. Otherwise, however, the 

characteristic times are insensitive to the magnetic field strength 

so long as the latter neither moninates the volume pressure at any 

stage, n o r  permits a heat flow across the field lines. The numerical 

values of B o $  in terms of Zo ,  as defined previously, are found 

from the relation 

C 

Thus, Z3 = 5 x loo5  corresponds to a magnetic field of 6 x 

gauss, whereas Z = 5 x relates to a field of about 2 x 

gauss e 
0 

We now turn to the situation where the magnetic field strengths 

are large enough to dominate over the gas pressure. Here again, 

we have integrated the non-linear equation (6.14) for initial 
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values of0.12 gauss and 80 gauss, These fields correspond to 

Zo values of 2 x loe2 and lo4, respectively. 

Again keeping the perturbations isobaric, with an initial 

electron temperature of 1.5 x lo6 OK and an electron density of 

7 x 10. 7 electrons/cm 3 , equation ( 6 . 6 )  implies that for Bo = 

OJ2 gauss the temperature drops by a factor 50 while the density 

increases only by a factorof6,7. The time scale for this process 

is 1,6 x 10 

final gas pressure is only about 1Oyo of the coronal value, 

6 sec. at 20/0 perturbation in density. Thus, the 

whereas the final magnetic field is at about 0.8 gauss. 

F o r  an initial field strength of about 80 gauss, we do not 

have any significant change in density, but the temperature drops 

by a f a c t o r  of 50 when the density is perturbed by about 1 part 

in a 10 The time scale of the temperature collapse in this 

case is about 3 x LO seco This high field case corresponds to 

the incompressible case considered by Parker (1953). 

is displayed in Fig, 4 0  

6 

6 

The evolution 

The characteristic times as displayed in Tables 7 and 8 show 

clearly that the concept of thermal instability is able t o  provide 

a satisfactory explanation of prominence formation. We shall 

discuss in detail the conclusions to be drawn from our results 

in the next section, in particular, the limitations placed on the 

condensation process by magnetic fields and size considerations. 
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0 Time s c a l e  f o r  prominence evo lu t ion  u s i n g  Doherty and Menzel 's  

0 0 111 

0,025 

0.015 

0 -010 

r e s u l t s .  

5 ~ " O O  x 10pa9  270 p e r t u r b a t i o n  i n  d e n s i t y .  
z O  

1 95x10'' 5 . 3 0 ~ 1 0  6 

5 . 8 9 ~ 1 0 " ~  1,76x10 6 

1 . 6 6 ~ 1 0 ~ ~  6 . 2 3 ~ 1 0  5 

5 e 89x10e8 1 76x10 5 

Table 7. 

-- 

yo equ i l ib r ium 

d e n s i t y  

1 .oo 

1.50 

2 .OD 

3 eo0 

! Y O )  e q u i l i b r i u m  

-- --- 

t cpT cX 7 to 
T G(Yo) 7 t0  s e c .  

C s e c .  

0.263 1 . 7 4 ~ 1 0 " ~  5 . 9 4 ~ 1 0  1.58~10 6 

0,060 2.57x10-' 4 . 0 3 ~ 1 0 ~  2 . 4 0 ~ 1 0 ~  

0,035 4 . 3 6 ~ 1 0 ' ~  2 . 3 7 ~ 1 0 ~  8 . 3 0 ~ 1 0 ~  

0.011 8 . 7 1 ~ 1 0 ~ ~  1.19~10~ 1 . 3 0 ~ 1 0  4 
i - 

d e n s i t y  + 
1,oo 

ly50 

2,oo 

3.08 

' 
5 e 88x105 

4 . 4 0 ~ 1 0 ~  

Time s c a l e  f o r  prominence evo lu t ion  u s i n g  t h e  c o o l i n g  f u n c t i o n  

computed by u s ,  

Zo = joOO x lo"?,  5.00 x loo8,  270 p e r t u r b a t i o n  i n  d e n s i t y .  

Table 8 .  
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CONCLUSIONS 

Our computations permit us to draw several important conclusions. 

1. The mechanism of thermal instability is indeed able to 

describe at least the initial stages of the condensation of 

quiescent prominences out of the coronal medium. From our  non- 

linear analysis, we find that the actual prominence state is 

reached after a time of typically lo6  seconds. It would be 

interesting to compare continuous filtergrams of the type taken, 

for instance, at the Lockheed Solar Observatory for newly formed 

prominences. It may be possible t o  check the predicted formation 

times from this kind of observation. 
1 

2. The condensation mechanism requires the presence of 

magnetic fields, since in their absence thermal conduction by 

electrons would wash out immediately any developing temperature 

inhomogeneity. We found that at least a field strength of loo4 

gauss was necessary, On the other hand, magnetic fields exceeding 

about low1 gauss though permitting drastic temperature decreases 

through thermal instability, result in a final matter density that 

remains the closer t o  the original coronal density, the higher 

the magnetic field strength is, Thus, the observation of prominences 

whose density is significantly above the density of the surrounding 

corona and which are permeated by magnetic fields of order.10 gauss 

require, after the initial drop in temperature, processes that 

cannot be understood in the framework of thermal instability. 

T o  The fact that most of the corona is not occupied by 

prominence-like material becomes a legitimate problem, since we 



have shown that coronal material is unstable against any thermal 

instability across magnetic field lines. The most obvious expla- 

nation is due to the structure of the field which near the surface 

and outside of activity regions is nearly radial. Thermal 

instability is then simply prohibited by heat conduction along 

the quasi-radial field lines. 

4e In the neighborhood of activity centers, however, the 

magnetic field should contain more o r  less closed structures that 

permit thermal instabilities to overcome conduction. It is 

significant that observations clearly show quiescent prominences 

t o  appear at the outskirts of spot groups, whereas the spot- 

related prominences of  the loop-type appear as typically transient 

phenomena, One thus would conclude that quiescent prominences 

can forn in connection with activity regions, due to their highly 

irregular field structures, but that for the same reason they are 

not able t o  develop into stationary phenomena right above the 

s p o t  fields proper, 

5. It would be interesting in the light of the foregoing 

discussion to compare records obtained from Babcock's magnetometer 

with the initial location of prominence formation. One might 

also l o o k  for a relation between the position of polar prominences 

and the transition region between the random fields at low and 

intermediate latitudes, and the more or less unipolar regions at 

high latitude 
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APPENDIX A 

The History of Observation 

Prominences are localized phenomena in the solar corona. 

The earliest reference to prominences by observers dates as far 

back as the year 1842 [Ball (1893) l .  

the eclipse of 1868 that the character of these objects, as really 

appertaining to the Sun, became properly understood. Janssen 

and Norman Lockyer, working independently, used the spectroscope 

f o r  solar observations during this eclipse and demonstrated that 

the sun is surrounded by a more or less regular shell of gaseous 

matter, lying immediately outside the photosphere. Norman Lockyer 

It was not, however, until 

gave the name "Chromosphere" to this outer layer, which at higher 

altitudes was thought to merge into the coronal medium. 

In 1891, the invention of  the spectroheliograph gave further 

impetus to the study of prominences. This new device, developed 

independently by Deslandres and Hale, enabled one to photograph 

the sun in different wavelengths. Further refinements in the 

observational techniques, after 1903, made it possible to follow 

prominences across the disk by means of their absorption of light 

from the chromosphere, They appeared as long dark ribbons 

superimposed on a bright background, Deslandres gave them the 

name "filaments," a name which is still in use today. Hale and 

Ellerman (1905) were the first to verify that the dark filaments 

appearing in spectroheliograms are nothing but prominences 

projected on the solar disk. These filaments when seen at the limb 

give the usual appearance of  a bright promingnce, like tongues of 



flames colored by the intense emission in the H alpha line of 

hydrogen. 

In 1930, McMath incorporated motion picture techniques into 

the spectrum of observational methods, This innovation has proved 

to be of great value, especially in the observation of fast 

evolving phenomena such as surges, prominence disappearances, 

etc,, and made it possible to study the complicated kinematics 

of prominence motion, The same year saw the invention of another 

powerful device called "coronagraphtt by Lyot. This instrument 

finally enabled prominence research to forego the assistance of 

eclipses 

Classification 

Prominences come in a variety of sizes and types. Even their 

place of origin in the solar atmosphere varies for different types. 

From the time of the very first observations, Father Secchi had 

noted two distinct classes, v i z . , ,  eruptive and quiescent prominences. 

The words ''eruptivetq and ttquiescent" are quite indicative of their 

dynamical aspects. 

Pettit and McMath, with the help of modern techniques, 

refined the classification system into six major groups. Each 

major group was further subdivided into sub-groups. The major 

groups are the following: I. Active; 11. Eruptive; 111. Sunspot; 

J V ,  Tornado; V. Quiescent; VI. Coronal. Pettit's classification 

is based primarily on the form and character the prominences have 

at any time. One class may turn into another class during their 

evolution, Thus there is nothing physical about the classification, 



useful as it is for taxonomic purposes. 

Menzel and Evans (1953), from a detailed analysis of motion 

picture records, devised a "behavior" classification system of 

solar prominences. Two basic classes were recognized. In class 

A ,  luminous material primarily comes from above in the solar 

corona, whereas in class B, it originates from below in the 

Chromosphere. Each class was further sub-divided into two sub- 

groups s namely, prominences associated with sunspots (S) , and 

prominences not associated with sunspots (N). The final classifi- 

cation is as follows: 

A, Prominences originating from above in coronal space. 

S. Spot prominences: a. rain; b, funnels; 1. loops. 

N. Non-spot prominences: a. coronal rain; b. tree trunk; 

c. tree; d o  hedgegrow; f. suspended cloud; m. mound. 

B,  Prominences originating from below in the chromosphere. 

S. Spot prominences: s. surges; p. puffs. 

N. Non-spot prominences: s .  spicules. 

The different names given by the authors convey a rough picture 

of  the general appearances of prominences, Type A prominences 

are far more common than type B prominences. 

In other schemes by Severny (1952) and by de Jager (Aller 

( 1 9 6 3 ) )  

basis of  classification, It suffices to say that our model 

computations are aimed at understanding the origin of class AN in 

the above scheme by Menzel and Evans. 

motions and evolutionary histories serve as the essential 
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Distribution 

The distribution of prominences on the solar disk is not 

uniform. They appear in two principal zones. The first group 

follows the sunspot zones, while the second group is confined to 

latitudes of about 45' at the start of a solar cycle, and migrates 

poleward. It reaches the pole near the maximum of solar activity 

and disappears soon after. 

It is suggested that our discussion refers to prominences 

in the spot zones due to the close relation with magnetic fields. 

Too little is known on solar activity in polar regions to either 

include or exclude the polar prominences in our considerations. 

Physical conditions 

Prominences of Menzel and Evans's class A are dense and 

relatively c o o l  objects embedded in the hot coronal medium, a fact 

demonstrated by the strong emission in the Balmer lines, the H 

and K lines of CaII and lines of metals like FeI, FeII, MgII 

etc, Several workers have attempted to obtain values for the 

various physical parameters like electron density, kinetic 

temperatures of electrons and ions, "turbulentu velocity, etc., 

that are prevailing in a prominence. 

To list a few papers we quote Athay and Orrall (1957), 

Jefferies and Orrall (1958, 1961a, l961b, 1961c, 1962, 1963), 

Zirin and Tandberg-Hanssen (1960), Shih-Huei (1961), Hirayama 

(1963, 1964), Rigutti and Russo (1964), Tandberg-Hanssen (1964), 

and in addition the review articles by d'bzambuja (1948, 1955), 

Kiepenheuer (1953b), de Jager (1959), Menzel (1959), Menael and 

Wolbach ( 1960 I, 11) . 
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Zirin and Tandberg-Hanssen (1960) ,  in particular, compared 

spectra of active and quiescent prominences and stated that 

quiescent prominences display spectra similar to that of the 

chromosphere at 1500 km in their height scale with weak HeII lines, 

whereas, active prominences display broader lines and strong HeII 

lines, Broadness of lines was taken as indicative of higher 

internal motion within the prominence. 

Recently Tandberg-Hanasen (1964) has studied the spectrum of 

a quiescent prominence in great detail and obtained absolute 

intensities for a large number of metal lines. The faintest 

lines quoted in his paper have intensities of lom5 x IA, where 

IA is the specific intensity of the photospheric radiation 

at the particular wavelength, In the same paper the spectrum 

of a quiescent prominence is compared with that of a flare and of 

an active prominence. It is stated that for active prominences 

significant emissions are observed in the lines of Mg I h 5523, 

He11 A 5411, and the coronal line Ca XV A 5445. On the other hand, 

the emission in the quiescent prominence is characterized by the 

lines of FeI, FeII, TiII, strongest of them all being the ScII 

lines, which, for instance, dominate completely the spectral 

region around 5600 A .  
0 

The physical conditions within the prominence obviously 

exhibit large departures f rom thermodynamic equilibrium. The 

only meaningful measure of internal energy is the kinetic temperature 

of particles, assumed to be the same for electrons, ions, and atoms. 

The interpretation of spectra becomes all the more difficult when 

the temperature gradient in the transition region from the corona 
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to the prominence is taken into account. Deduced values of the 

kinetic temperature vary between lo4 t o  5 x lo4 OK. 

large scatter exists f o r  density values, ranging from 10” to 

1013 atoms per cm30 

of 5 to 10 km seco A s  a rule, higher temperatures and densities 

are found in AS prominences. 

A similarly 

Computed turbulent velocities lie in the range 
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APPENDIX B 

In defining o u r  cooling function in Section 3 ,  we stated that 

emission in subordinate metal lines as well as emission in sub- 

ordinate hydrogen continua is negligible in comparison with 

emission in resonance lines, In support of this assertion, we 

would like to estimate in the following from published observational 

data, the relative importance of these line and continuum emissions 

for a quiescent prominence, Since the available measurements have 

only a partial overlap, we contracted all intensity values onto a 

common scale referring to an ''average" quiescent prominence. 

Balmer and Paschen emissions were obtained from a paper by 

dt'efferies and Orrall (1961). 

helium and metal, intensity values in the range Ah 3600-3800 A 

were taken from a paper by Jefferies and Orrall (l962), 

range hh 3800-5896 A, Tandberg-Hanssen (1964) has given an 

extensive table of line intensities. Where no line intensities 

were given in the above references, we used the table of intensities 

published by Yakovkin and Zel dina ( 1963) . 

For  the lines due to hydrogen, 
0 

For the 
0 

Altogetaer the following intensities were found: 
0 -2 -1 0 Balmer continuum emission at 3642 A = 310 ergs cm sec 

Balmer continuum emission at 3672 A = 55 I 1  11 

Paschen continuum emission at 8200 A = 108 'I 11 I1 11 

Paschen continuum emission at 8367 A = 72 I1  11 

Energy emitted by all metal lines in the 

sterad-'per8 

It tl 
0 

0 
I1 

0 
11 I 1  

range hh 7600-5900 = 4.9~10~ ergs cm -2 sec -1 sterad-' 
Energy emitted by Hydrogen lines = 5.52~10~ ergs cm -2 sec -1 sterad -1 



-2 -1 sec Energy emitted by Helium lines = 4.6~10~ ergs cm sterad-’ 

We now classify the metal lines into various intensity groups, 

(Table B , 1 ) .  The strongest metal lines are tabulated separately 

(Table B.2) .  

from low lyinglevels. Hydrogen and Helium lines are also listed 

separately in Tables B B 3  and B.4. 

Most of these lines are resonance lines or lines 

It is already quite obvious that the subordinate metal lines 

can never play a dominant part in the total emission of a volume 

element, In order t o  check the possibility that a large number 

of very faint lines below the observation threshold could shift 

the importance of subordinate lines by a significant amount, we 

have ordered the observed lines in groups according to their 

intensity, For instance, all lines with intensities between 20 

and 40, between 40 and 80, between 80 and 160, ergs/cm /sec/sterad 

etc., were combined and their total emission determined. The 

results are shown in Fig. 5, where the logarithm of the total 
emissfon per class is plotted against the energy range on an 

essentially logarithmic scale, Actual results are represented by 

circles, the figures refer to the number of lines included in 

each count. The very strong resonance lines were left out as 

immaterial for the present purpose. 

2 

We have drawn a smooth curve through the points and continued 

it into the region of lower intensity. Admittedly, this extension 

is debatable in i t s  detailed behavior. However, we feel that it 

is not too unreasonable if one recalls that the very weak lines 

are largely represented by transitions from higher excited states 

whose population under conditions of collisional excitation is 
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drastically reduced, From the extrapolation we find a total 

emission of less than 100 ergs/cm /sec/sterad in all weak linea. 

We can compare this estimate with the number of lines with 

intensities less than 20, listed in the observational data. This 

number comes to about 200, of which 9Oyo have intensities less 

than 5. Even if each line had an intensity of 5, the total would 

still be completely negligible. 

2 

It thus seems to be quite permissible to neglect the emission 

of subordinate lines in the cooling function even at temperatures 

as low as some I O 4  OX which corresponds to the value quoted for 

an established quiescent prominence. 
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TABLE B . l  

I n t e n s i t y  of  metal  l i n e s  i n  a qu ie scen t  prominence 

Energy range i n  
-2 -1 ergs cm s e c  s terad- '  

20 - 40 

40 - 60 

60 - 80 

80 - 100 

100 - 120 

120 - 140 

140 - 160 

160 - 180 

180 - 200 

200 - 220 

220 - 240 

240 - 260 

260 - 280 

280 - 300 

300 - 320 

320 - 340 

'340 - 360 

360 - 380 

420 - 460 

460 - 500 

500 - 540 

540 - 580 

No. o f  l i n e s  i n  
t he  energy range 

6 

6 

6 

10 

8 

9 

10 

9 

5 

10 

7 

8 

7 

3 

3 

4 

2 

3 

3 

2 

4 

2 

r o t a 1  energy i n  t h e  
l i n e s  i n  t h e  range 

180 

300 

420 

900 

880 

1170 

1500 

1530 

950 

2 100 

1610 

2000 

1880 

870 

930 

1320 

700 

1110 

1320 

960 

2080 

1120 



Energy range i n  
-2 -1 ergs  cm s e c  sterad- '  

TABLE B e l  (Continued) 

700 - 740 
740 - 780 

780 - 820 

820 - 860 

900 - 940 

940 - 980 

980 - 1020 
1000 - 1400 
1400 - 1800 
1800 - 2200 
2200 - 2600 
2600 - 3000 

3000 - 3400 

3400 - 3800 

3800 - 4200 

4600 - 5000 
5000 - 5400 

5400 - 5800 
5800 - 6200 
6200 - 6600 

l o e  of  l i n e s  i n  
the energy range 

6 

3 

4 

3 

1 

1 

2 

2 

1 

1 

- 
1 

o t a l  energy i n  t h e  
i n e s  i n  t h e  range  

720 

3040 

1600 

840 

2 760 

1920 

1000 

7200 

9 600 

6000 

9600 

8400 

3200 

3600 

8000 

9600 

5200 

5600 

- 
6400 

Total energy contained i n  the  meta l  l i n e s  l i s t e d  above = 1.2~10 5 
e r g s  cm'2sec'ls terad ' l  

-2 -1 No. of f a i n t  l i n e s  w i t h i n  the energy range 4-20 e r g s  cm s e c  s terad- '  
0 

= 200 
Energy locked w i t h i n  t h e s e  f a i n t  l i n e s  = 2x10 3 e r g s  cm -2 sec-'sterad-' 



TABLE B,2 

Intensity of  very strong metal lines 

~~ 

Wavelength 
0 

in A Atom 
Energy in 

-2 ergs cm 
sec -1 sterad-’ 

5 1.3 x 10 

1.2 x 10 

0.66 104 

1.5 x 10 4 

4 1.08 x 10 
4 1.6 x 10 
4 1,8 x 10 
4 303 x 10 
4 1.0 x 10 

8 x lo3 

Resonance line 

Resonance line 

Resonance line 

Resonance line 

Resonance line 

33P0 - 4 3 s 

33P0 - 43s 
33P0 - 43s 
33P0 - j3D 

- 33D 

3 Po is the next higher level f rom the ground state ’S level. 

Total energy contained in very strong lines = 3.69~10~ ergs cm -2 
sec -1 sterad-’ 

Sodium D lines are included in Table B.1. 
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TABLE B.3 

Hydrogen line intensities 

Hydrogen line 

from level 
Transition to level 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

1 5  

16 

17  

19 

20 

2 1  

22 

25 

0 
h in A 

6563 

4861 

4340 

4102 

3970 

3889 

3835 

3798 

3771 

3750 

3734 

3722 

3711 e 9 

3703 8 

3697.1 

3686.8 

3682.8 

3679 e 3 

3676 3 

36?3.7 

Energy in 
ergs cm -2 s e c  -1 sterad-’ 

1.33 105 
5 

4 
1.56 x 10 

7.4 x 10 

6.0 104 

6.4 104 
4 

4 1.4 x i o  
2.4 x 10 

7 103 

5 103 

2 103 

1 103 

1 103 

1 103 

1 x 103 

3 3 x 10 

2 

2 

2 

2 

9 x 10 

8 x 10 

7 x 10 

6 x 10 

5 x l o2  
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Energy in 
-2 -1 -1 

Hydrogen line 0 
Transition to level 2 A in A 

from level ergs cm sec sterad 
-- 

2 

2 

2 

3671.4 4 x 10 24 

25 3669.4 3 x 10 

26 3667.6 3 x 10 

TABLE B.? (Continued) 

Total energy locked in Hydrogen lines given above = 

5.52 x lo5 ergs cm -2 sec -1 sterad-’ 



TABLE B,4 

Helium line intensities 

Total energy locked in Helium lines given above 

-2 -1 
= 4.6 x lo4 ergs cm sec sterad-’ 
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APPENDIX C 

In section 5, thermal conduction was ignored as an energy 

gain mechanism in comparison with radiative cooling. 

To justify this procedure for o u r  models that are dealing 

with very small magnetic fields, we compare in Table C.1 cooling 

due t o  radiation and heating due to thermal conduction across 

magnetic field lines, The isobaric condition, that is, constancy 

of total pressure implies constancy of gas pressure, or 

cp = N T (constant) e e  

We choose a value of 1.05 x 1014 for ‘p that follows from 

Ne 
have been obtained from o u r  computation. 

= 7 x l o 7  and Te = 1.5 x l o6  O K .  The radiative losses quoted 

In the presence of a magnetic field the thermal conductivity 
2 2  across the lines is reduced by a factor 

wherewe is the electron cyclotron frequency, t 

between collision. 

t o  ions, 

below, the conduction is due t o  electrons. For our case of 

if wete >> 1, 

is the mean time e 
The remaining momentum transfer is mainly due 

If, on the other hand, wit: is of the order of unity or 

w E t f  >> 1, the coefficient of thermal conductivity is given by 

~ 6 x 1 0  -17 c p B -  * 2T-5/2 e ergs deg”sec”cm” . 
KO 

K can be written as 
0 



6 
l o  5x10 

6 1 .ox10 

4 Ox105 

5 1 e Ox10 

4 4 Ox10 

TABLE C .1 

s 9  r a d i a t i v e  
:ooling i n  
?rgs/cm3/s ec 

(Raju) 

8 54x1OM8 

2 82x10°7 

9 9 4 ~ 1 0 ' ~  

7 7 7 ~ 1 0 ~ ~  

1 e 3 9 ~ 1 0 ' ~  

4x2K T A-2 0 0 0  

12 A-2 
1,45x10 

1 . 1 6 ~ 1 0  A 

7 . 2 5 ~ 1 0  

3067x10 

12  -2 
0 

11A-2 

11A-2 

2.31x10 11A-2 

65 

2 2  

7 6x10 5 

2 . 2 5 ~ 1 0  5 

1 . 4 4 ~ 1 0  4 

2.2 5x10 2 

1 . 4 4 ~ 1 0  
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with, 

2 2 = 1 0  11 Brp 2 -2 Te 5 
Wete 

It is clear that one can ignore thermal 
2 conduction if KoTek 

is less than the radiative cooling rate, where 

is the wave number of the disturbance. We thus have to compare 

4 n  K T /Ao  with the radiative loss. 

the selection of appropriate k- or A -values. 

2 2 
o e  The remaining problem is 

0 

To reach the prominence state, Ne must increase by about a 

factor of 100, with the kinetic temperature decreasing by about 

the same factor. We choose the initial field to be gauss. 

Since the field is frozen in, the later values are given by the 

condition 

For a cylindrical model with radial condensation, the radius would 

have to decrease by the square root of the condensation factor. 

If the final prominence diameter is 20,000 km, then the initial 

scale length o f  the disturbance must be 200,000 km. 

For this given initial field, and a scale length of 200,000 

km we see from the table that we indeed can ignore thermal conduction. 

One also sees that as the condensation proceeds conduction can be 

ignored with even much smaller values for Aoe 

important if we recall that an actual prominence is made up of 

filamentary structures of relatively small diameter. While at 

This remark is 



4 x lo4 OK the overall scale length would be around 33,000 km 

Ao-values as small aa 1000 km would still be permissible. 

If we start with fields much lower than lom4 gauss, then the 

initial scale length for a disturbance becomes too large to be 

acceptable on observational grounds, in addition to the fact that 

the necessary inhibition of electron conduction is lost; c,f. 

below, If we vary B and cp (which means varying me) in such a way 
that B2qm2 remains constant, we see that lom4 gauss indeed is the 

lower limit of acceptable field strengths. 

We conclude this discussion of thermal Conduction by showing 

in a qualitative sense that it is vital to inhibit eleotron 

conduction both during the formation of a prominence, and after 

it is in stationary state. In fact, thermal conduction in the 

absence of a magnetic field would heat up a prominence in a matter 

of minutes, A detailed calculation on this subject was carried 

out by Tandberg-Hansaen, Jen8en and Roseeland (1958) , 

Heating by thermal conduction is governed by the diffusion 

equation, 

c - =  aTe a t  &(K%) ax . 
The coefficient of thermal conduction in the absence of a magnetic 

field is (Orrall and Zirker (1961)) 

K = 3 ~ 1 0  -6 #5/2 e 

C is the specific heat per unit volume, Via., 
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x is the so-ordinate across the transition region over which the 

temperature f a l l s  from the coronal to the prominence value. 

Using the expression for K in equation (Gel), we get 

... 

For an estimate of orders of magnitudes, the differentials 

may be replaced by differences, vizo, 

Gt = t 

Ax = 4 the scale length of the transition region. 

we obtain 

is now the characteristic time for the heating process, 
C 

Taking ATe= Te, 

choosing N = 10 9 cmo3 and Te= 106 O K ,  we find 
e 

Some typical numerical values for tc are given below in Table C,2 

as a function of the transition length 4 .  

The table clearly shows that the characteristic times are 

not o n l y  negligibly small in comparison with the observed life- 

times of quiescent prominences for any reasonable value of 4, but 

also with the formation times derived in this paper. 



To overcome conduct ion  one t h u s  needs t h e  p o s t u l a t e d  magnetic 

f i e l d s  . 

TABLE C .2 
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Figure 1, 

2 A p l o t  of l o g  (E,”; ) versus l o g  of electron temperature. 

E is the t o t a l  radiative cooling rate in ergs/sec/cm’ and 

N ’  is considered to be a pure number. 
e 
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Figures 2 and 3.  

P l o t s  of dimensionless density parameter y ( =  p/po) versus 

dimensionless time parameter T ( =  t/TO). p is the initial 

3 equilibrium density in gm/cm e 

seconds defined in the text. The curves correspond to the 

cooling functions computed by Raju, and Doherty and Menzel. 

The equilibrium density values have been perturbed by 2%. 

We indicate one curve wherein perturbation in density is 

100/0. 

of temperature given by the equation (6.6) in the text. 

The curves for the two different values of Zo ( =  Bo/8xpg) ,  

corresponding to field strengths of 2 x and 6 x l ow3  

gauss, are the same, The dotted curve corresponds to the 

field strength of 0,12 gauss. For the dotted curve the 

value of y = 6.66 corresponds to a temperature of 30,000 OK, 

if the unperturbed equilibrium value of y is 1. 

T is some time constant in 
0 

A value of y at any time has a corresponding value 

2 0 
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Figure 4. 

A plot of the change in dimensionless density parameter 

y ( =  p/r, ) versue the dimensionless time parameter T 

( =  t / a o ) .  

Radiative cooling rate adopted for this plot is the one 

compu%ed by Raju, The equilibrium value of y is chosen to 

be 1, This  value of y has been perturbed initially by one 

part in a million, The equilibrium magnetic field strength 

is about 80 gauss. F o r  a given value of y at any time the 

corresponding temperature is given by the equation (6.6) 

in the text. The value of y = 1,000,049 corresponds to a 

temperature of 30,000 OK, if the initial temperature is 

1.5 x lo6 OK and the electron density is 7 x l o 7  electrons/ 
3 cm a 

0 

r0  is some time constant defined in the text. 
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Figure 5 "  

A plot, of the logarithm of the total emission in 

ergs/crn /sec/sterad, per class against the energy range 2 

on an essentially logarithmic scale, The actual results 

are represented by circles, the figures refer to the 

number of lines included in each count, The very strong 

resonance lines were left out as immaterial for the 

present purpose 




